Multi-agent Reinforcement Learning Library (MARLlib) is a MARL library that utilizes Ray and one of its toolkits RLlib. It offers a comprehensive platform for developing, training, and testing MARL algorithms across various tasks and environments.
Here’s an example of MARLlib’s API usage:
from marllib import marl
# prepare env
env = marl.make_env(environment_name="mpe", map_name="simple_spread", force_coop=True)
# initialize algorithm with appointed hyper-parameters
mappo = marl.algos.mappo(hyperparam_source='mpe')
# build agent model based on env + algorithms + user preference
model = marl.build_model(env, mappo, {"core_arch": "mlp", "encode_layer": "128-256"})
# start training
mappo.fit(env, model, stop={'timesteps_total': 1000000}, share_policy='group')
University-1652 is a multi-view multi-source benchmark for drone-based geo-localization that contains 1652 buildings of 72 universities around the world. We provide images collected from the virtual drone, the satellite and the ground.
[Paper] [Slide] [Dataset] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍]
Task 1: Drone-view target localization. (Drone -> Satellite)} Given one drone-view image or video, the task aims to find the most similar satellite-view image to localize the target building in the satellite view.
Task 2: Drone navigation. (Satellite -> Drone)} Given one satellite-view image, the drone intends to find the most relevant place (drone-view images) that it has passed by. According to its flight history, the drone could be navigated back to the target place.
We provide our generated images and make a large-scale synthetic dataset called DG-Market. This dataset is generated by our DG-Net (https://arxiv.org/abs/1904.07223) and consists of 128,307 images (613MB), about 10 times larger than the training set of original Market-1501 (even much more can be generated with DG-Net). It can be used as a source of unlabeled training dataset for semi-supervised learning. You may download the dataset from Google Drive (or Baidu Disk password: qxyh).
DG-Market | Market-1501 (training) | |
---|---|---|
#identity | - | 751 |
#images | 128,307 | 12,936 |
You could find the point-cloud format Market-1501 Dataset at https://github.com/layumi/person-reid-3d.