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Abstract

In this paper, we investigate Universal Domain Adap-
tation (UniDA) problem, which aims to transfer the knowl-
edge from source to target under unaligned label space. The
main challenge of UniDA lies in how to separate common
classes (i.e., classes shared across domains), from private
classes (i.e., classes only exist in one domain). Previous
works treat the private samples in the target as one generic
class but ignore their intrinsic structure. Consequently,
the resulting representations are not compact enough in
the latent space and can be easily confused with common
samples. To better exploit the intrinsic structure of the
target domain, we propose Domain Consensus Clustering
(DCC), which exploits the domain consensus knowledge to
discover discriminative clusters on both common samples
and private ones. Specifically, we draw the domain con-
sensus knowledge from two aspects to facilitate the clus-
tering and the private class discovery, i.e., the semantic-
level consensus, which identifies the cycle-consistent clus-
ters as the common classes, and the sample-level consen-
sus, which utilizes the cross-domain classification agree-
ment to determine the number of clusters and discover the
private classes. Based on DCC, we are able to separate
the private classes from the common ones, and differentiate
the private classes themselves. Finally, we apply a class-
aware alignment technique on identified common samples
to minimize the distribution shift, and a prototypical reg-
ularizer to inspire discriminative target clusters. Experi-
ments on four benchmarks demonstrate DCC significantly
outperforms previous state-of-the-arts.

1. Introduction
Deep convolutional neural networks have achieved sig-

nificant progress in many fields, such as image classifica-
tion [55, 24], semantic segmentation [7, 8], etc. However,
as a data-driven technique, the severe reliance on anno-
tated in-domain data greatly limits its application to cross-
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Figure 1. A comparison between previous methods and ours. Pre-
vious methods simply treat private samples as one general class
and ignore its intrinsic data structure. Our approach aims to better
exploit the diverse distribution of private samples via forming dis-
criminative clusters on both common samples and private samples.

domain tasks. As a feasible solution, unsupervised domain
adaptation (UDA) [45] tries to solve this by transferring
the knowledge from an annotated domain to an unlabeled
domain, and has achieved significant progress in multiple
tasks [33, 34, 27, 29, 35, 37]. Despite UDA’s achievement,
most UDA solutions assume that two domains share identi-
cal label set, which is hard to satisfy in real-world scenarios.

In light of this, several works considering the unaligned
label set have been proposed: open set domain adaptation,
partial domain adaptation, and universal domain adaptation.
Open set domain adaptation (OSDA) [54] assumes the tar-
get domain possesses private classes that are unknown to
the source domain. Analogously, partial domain adaptation
(PDA) [4] describes a setting where only the source domain
holds private classes. However, both OSDA and PDA still
require prior knowledge where the private classes lie in. As
a result, they are limited to one scenario and fail to gener-
alize to other scenarios. For example, an OSDA solution



would fail in the PDA scenario as it only seeks private sam-
ples in the target domain. To solve this, [62] takes a step
further to propose a more general yet practical setting, uni-
versal domain adaptation (UniDA), which allows both do-
mains to own private classes.

The main challenge of transferring over unaligned la-
bel space is how to effectively separate common samples
from private samples in both domains. To achieve this
goal, many efforts have been devoted to performing com-
mon sample discovery from different perspectives, such as
designing new criteria [4, 3, 62, 17, 53] or introducing ex-
tra discriminator [63, 5, 38, 9]. However, previous practices
mainly focus on identifying common samples but treat pri-
vate samples as a whole, i.e., unknown class (Bottom left
in Fig. 1). Despite making progress, the intrinsic structure
(i.e., the variations within each semantic class and the rela-
tionships between different semantic classes) of the private
samples is not fully exploited. As the private samples in na-
ture belong to distinct semantic classes, treating them as one
general class is arguably sub-optimal, which further induces
lower compactness and less discriminative target represen-
tations.

In this paper, we aim to better exploit the intrinsic struc-
ture of the target domain via mining both common classes
and individual private classes. We propose Domain Consen-
sus Clustering (DCC), which utilizes the domain consen-
sus knowledge to form discriminative clusters on both com-
mon samples and private samples (Bottom right in Fig. 1).
Specifically, we mine the domain consensus knowledge
from two aspects, i.e., semantic-level and sample-level, and
integrate them into two consecutive steps. Firstly, we lever-
age Cycle-Consistent Matching (CCM) to mine the seman-
tic consensus among cluster centers so that we could iden-
tify common clusters from both domains. If two cluster
centers reach consensus, i.e., both centers act as the other’s
nearest center simultaneously, this pair will be regarded
as common clusters. Secondly, we propose a metric, do-
main consensus score, to acquire cross-domain classifica-
tion agreements between identified common clusters. Con-
cretely, domain consensus score is defined as the proportion
of samples that hold corresponding cluster label across do-
mains. Intuitively, more samples reach consensus, the dis-
tribution shift between matched clusters is smaller. There-
fore, domain consensus score could be regarded as a con-
straint that ensures the precise matching of CCM. More-
over, domain consensus score also offers a necessary guid-
ance that determines the number of target clusters, and en-
courages the samples to be grouped into clusters of both
common and private classes. Finally, for those common
clusters with high domain consensus scores, we exploit a
class-aware alignment technique on them to mitigate the
distribution shift. As for those centers that fail to find their
consensus counterparts, we also enhance their cluster-based

consistency. To be specific, we employ a prototypical reg-
ularizer to encourage samples to approach their attached
cluster centers. In this way, those samples belonging to
different private categories will be encouraged to be distin-
guishable from each other, which also contributes to learn-
ing better representations.

Our contribution can be summarized as: 1) We tackle the
UniDA problem from a new perspective, i.e., differentiat-
ing private samples into different clusters instead of treating
them as whole. 2) We propose Domain Consensus Clus-
tering (DCC), which mines domain consensus knowledge
from two levels, i.e., semantic-level and sample-level, and
guides the target clustering in the absence of prior knowl-
edge. 3) Extensive experiments on four benchmarks ver-
ify the superior performance of proposed method compared
with previous works.

2. Related works
Closed Set Domain Adaptation, also known as unsu-

pervised domain adaptation (UDA), assumes two domains
share identical label set. The main focus lies in how to min-
imize the distribution shift. Some methods minimize the
discrepancy in the feature space directly [40, 39, 56, 59, 42,
61, 30, 16]. Some recent works take advantage of adversar-
ial training to promote the alignment in the input space [11,
23, 25, 20, 10] or feature space [58, 44, 6, 18, 38, 64, 43].
Moreover, there are also some works performing adaptation
via clustering in the target domain [28, 57]. However, they
could not trivially generalize to the unaligned label space.

Partial Domain Adaptation (PDA) holds an assump-
tion that private classes only lie in the source domain, which
has received wide attention recently. SAN [3] employs
class-wise domain discriminators to align the distributions
in a fine-grained manner. IWAN [63] proposes to identify
common samples with the domain similarities from the do-
main discriminator, and utilizes the similarities as weights
for adversarial training. Recently, ETN [5] proposes a pro-
gressive weighting scheme to estimate the transferability
of source samples, while BA3US [36] incorporates an aug-
mentation scheme and a complement entropy to avoid neg-
ative transfer and uncertainty propagation, respectively.

Open Set Domain Adaptation (OSDA). Different set-
tings [54, 46, 1, 14] have been investigated for the open
set domain adaptation. In this paper, we mainly focus
on the setting proposed by [54], where the target do-
main holds private classes that are unknown to the source.
OSBP [54] proposes an adversarial learning framework that
enables the feature generator to learn representations to
achieve common-private separation. Recent works [38, 15]
follow this paradigm to draw the knowledge from the
domain discriminator to identify common samples that
share the semantic classes across domains. ROS [1] em-
ploys self-supervised learning technique to achieve the
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Figure 2. (a) Illustration of Domain Consensus Clustering (DCC). i) As the number of target classes is not given, we aim to select the
optimal target clustering from multiple candidates. ii) For obtained target clusters, we leverage cycle-consistent matching (CCM) to
identify clusters representing common classes from both domains. iii) Then we utilize domain consensus score to estimate the degree of
agreement between matched clusters. iv) Finally, based on the domain consensus score, we could determine the optimal target clustering.
(b) Illustration of Cycle-Consistent Matching. If two clusters from different domains act as the other’s nearest neighbor, samples from the
two clusters are identified as common samples that share the same semantic labels.

known/unknown separation and domain alignment.
Universal Domain Adaptation (UniDA), as a more

challenging scenario, allows both domains having their own
private classes. UAN [62] proposes a criterion to quan-
tify sample-level uncertainty based on entropy and domain
similarity. Then samples with lower uncertainty are en-
couraged for adaptation with higher weight. However, as
pointed by [17], this measurement is not discriminative and
robust enough. Fu et al. [17] designs a better criterion that
combines entropy, confidence, and consistency from auxil-
iary classifiers to measure sample-level uncertainty. Simi-
larly, a class-wise weighting mechanism is applied for sub-
sequent adversarial alignment. However, they both treat pri-
vate samples as one general class while ignoring the intrin-
sic structure of private samples.

Compared with previous works, our work differs from
them mainly in two aspects. First, most previous ap-
proaches perform sample-independent evaluation to sepa-
rate common samples and private samples, while we con-
sider a cluster-based method to better exploit the intrinsic
structure of target samples. Second, our approach provides
a unified framework to deal with different sub-cases of uni-
versal domain adaptation, i.e., OSDA, PDA, and UniDA.

3. Preliminaries

In universal domain adaptation, we are provided with an-
notated source samples Ds = {(xsi , ysi )}

ns

i=1, and unlabeled

target samplesDt = {(xti)}
nt

i=1. Since the label set may not
be identical, we use Cs, Ct to represent label set for two
domains accordingly. Then we denote C = Cs ∩ Ct as the
common label set. We aim to train a model on Ds and Dt
to classify target samples into |C|+1 classes, where private

samples are grouped into one unknown class.
The model consists of two modules: (1) feature extractor

fφ that maps the input images into vector representation:
v = fφ(x), and (2) classifier gφ that assigns each feature
representation v into one of Cs classes: p = gφ(v). For
samples from two domains, we group them into clusters,
respectively. The cluster assignment of source samples is
based on the ground truth and the source center is the mean
embedding of source samples within one specific class. For
the c-th source cluster Dsc = {xsi}

ns
c
i=1, its cluster center is:

µsc =
1

nsc

∑
xs

i∈Ds
c

fφ(x
s
i )

||fφ(xsi )||
. (1)

As for target samples, we adopt K-means to group them into
K clusters and obtain corresponding centers {µt1, ..., µtK}.

4. Methodology
In this paper, we aim to utilize the domain consensus

knowledge to guide the target clustering, which exploits the
intrinsic structure of the target representations. Specifically,
we mine the domain consensus knowledge from two levels.
Firstly, the semantic-level consensus among cluster centers
is utilized to identify cycle-consistent clusters as common
classes (§ 4.1). Secondly, we design a novel metric named
“domain consensus score” to utilize the sample-level con-
sensus to specify the number of target clusters (§ 4.2). Fi-
nally, we discuss the cluster optimization and objectives in
§ 4.3. The overview of our approach is presented in Fig. 2.

4.1. Cycle-Consistent Matching

The main challenge of universal domain adaptation is
how to separate common samples from private samples.
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Figure 3. Illustration of Domain Consensus Score. For each sam-
ple from matched clusters, we search for its nearest cluster center
in the other domain. Then domain consensus score is calculated as
the proportion of samples that reach consensus, i.e., the labels of
their nearest cluster centers in the other domain match with those
achieved by CCM.

Unlike previous works [62, 17] that perform sample-level
identification on the common samples, this paper aims to
mine both common classes and individual private classes
simultaneously with discriminative clusters. Now a ques-
tion naturally arises: how to associate common clusters that
represent the same semantic classes from both domains?
To achieve this, we propose Cycle-Consistent Matching
(CCM) to link clusters from the same common classes
through mining semantic-level consensus.

As illustrated in Fig. 2 (b), for each cluster center, we
search for its nearest cluster center in the other domain. If
two clusters reach consensus, i.e., both act as the other’s
nearest center simultaneously, such a pair of clusters is rec-
ognized as common clusters. The intuition here is simple:
cluster centers from the same class usually lie close enough
to be associated compared to the clusters representing pri-
vate classes. Further, to ensure this assumption, we utilize
the sample-level consensus to promote the effectiveness of
CCM, which is detailed in the next section.

4.2. Domain Consensus Score

Enabled by CCM, we could identify common samples
from both domains. Nevertheless, another problem is not
yet solved: how to determine the number of target clus-
ters without knowing the exact number of underlying target
classes? To solve this, one plausible solution is to adopt
existing clustering evaluation criteria [51, 12, 2] to estimate
the number of clusters. However, these techniques are de-
signed for the single-domain scenario and cannot directly
take cross-domain knowledge into consideration. Hence,
we propose a metric, domain consensus score, which uti-

lizes the sample-level consensus to determine the number
of target clusters, thus forming discriminative clusters.

As shown in Fig. 3, for each sample from paired clus-
ters, we search for its nearest cluster in the other domain,
and then determine if it reaches consensus, i.e., this sample
holds corresponding cluster label across domains. Through
collecting samples that reach consensus, the agreement for
this pair of clusters can be evaluated.

Concretely, given a pair of matched clusters {vsi }mi=1 and
{vti}ni=1 with corresponding centers µsc and µtk, we aim to
measure the sample-level consensus from two views, i.e.,
the source view and the target one. To obtain consensus
score on source view, for each source sample, we calculate
its similarities with all target cluster centers {µt1, ..., µtK}:

rsi,k = Sim(vsi , µ
t
k), k ∈ {1, ...,K}, (2)

where Sim(·) denotes the cosine similarity, i.e.,
Sim(a, b) = 〈a,b〉

‖a‖‖b‖ . Then the consensus score could
be formulated as the proportion of samples that reach
consensus:

Ss(c,k) =
∑m
i=1 1{argmaxk(r

s
i,k) = k}

m
, (3)

where 1{argmaxk(r
s
i,k) = k} is a indicator to judge if vsi

holds corresponding cluster index (k) across domains.
Analogously, we could obtain the consensus score on

target samples St(c,k). Then we average the score of two
views to obtain the consensus score of this matched pair,

i.e., S(c,k) =
Ss
(c,k)+S

t
(c,k)

2 . Finally, we calculate the mean
of consensus scores of all matched pairs of clusters.

To specify the number of target clusters K, we perform
multiple clusterings with different K and then we deter-
mine the optimal one according to the domain consensus
score. Concretely, for different instantiations of K which
are equally spaced, we compute the consensus score for
each one, and the instantiation of K with the highest score
is chosen for subsequent clustering.

Empirically, we find DCC tends to separate samples
from one class into multiple clusters at the beginning, which
is also known as over-clustering. The reason is that to
achieve a higher consensus score, more accurate matching
between clusters is preferred. Consequently, at the begin-
ning, DCC prefers small clusters with “easy” samples (i.e.
less impacted by the domain shift), which may make the
number of clusters larger than the underlying number of
target classes. As the adaptation proceeds, the number of
clusters tends to decrease and converges to a certain num-
ber after a period of training.

4.3. Cluster Optimization and Objectives

In this section, we first introduce the clustering update
strategy. Then we enumerate objectives, i.e., prototypical



regularizer, contrastive domain discrepancy. Finally, we
present the overall objective and the weight of each item.

Alternative Update. To avoid the accumulation of inac-
curate labels, we optimize the model and update the cluster-
ing alternatively. Ideally, we expect to specify the number
of clusters K with only one search, but it is impossible due
to the large domain gap at the initial stage. Hence, DCC
specifies the K based on domain consensus score for each
update of the clustering. Empirically we find that: 1) in
each round of searching, the domain consensus scores ex-
hibit a bell curve as K increases. 2) K converges to a spe-
cific value after several initial rounds of searching, i.e. after
early stages of training. Motivated by these observations,
we adopt two stopping criteria to improve the efficiency of
searching, i.e., stop the searching once the consensus score
drops a certain number of times continuously, and fix the K
once it holds a certain value for a certain number of rounds.

Prototypical Regularizer. To enhance the discrim-
inability of target clusters, we impose a prototypical
regularizer on target samples. Specifically, let M =
[µt1, µ

t
2, ..., µ

t
K ] denotes the prototype bank that stores all

L2-normalized target cluster centers and these prototypes
is updated iteratively during training. Then the regularizer
could be formulated as:

Lreg = −
nt∑
i=1

K∑
k=1

ŷti,k log p̂(i,k), (4)

where ŷti is the one-hot cluster label, and

p̂(i,k) =
exp(vi

Tµtk/τ)∑K
k=1 exp(vi

Tµtk/τ)
. (5)

Here vi is L2-normalized feature vector of target samples.
τ is a temperature parameter that controls the concentration
of the distribution [22], and we set it to 0.1 empirically.

Contrastive Domain Discrepancy (CDD). Since the
identified common samples are grouped into clusters, we
leverage CDD [28, 27] to facilitate the alignment over iden-
tified common samples in a class-aware style. We impose
Lcdd to minimize the intra-class discrepancies and enlarge
the inter-class gap. Consequently, the enhanced discrim-
inability, in turn, enables DCC to perform more accurate
clustering. Details of CDD are provided in Appendix. A.

Overall Objective. The model is jointly optimized with
three terms, i.e., cross-entropy loss on source samples Lce,
domain alignment loss Lcdd, and the regularizer Lreg:

L = Lce + λLcdd + γLreg, (6)

Lce = −
ns∑
i=1

|Cs|∑
c=1

ŷsi,c log(σ(gφ(fφ(x
s
i ))), (7)

where σ denotes the softmax function, and ŷsi is the one-hot
encoding of source label. λ is set to 0.1 for all datasets.

As mentioned, the target clustering usually converges to
the optimal one after several rounds of searching, so simply
applying a constant weight on Lreg may hinder the conver-
gence as it promotes the inter-cluster separation. Therefore,
we apply a ramp-up function on γ, i.e., γ = e−ω×

i
N , where

i and N denote current and global iteration, and ω = 3.0.
Such an incremental weight allows the size of clusters to
grow in the earlier stage while prevents from absorbing ex-
tra private samples after saturated.

Inference. At inference stage, we do not perform any
clustering. With the prototypes M = [µt1, µ

t
2, ..., µ

t
K ], we

can assign each sample a label same with the nearest proto-
type. In this way, common samples can be naturally sepa-
rated from private ones in target domain.

5. Experiments

5.1. Setup

Besides the setting [62] where private classes exist in
both domains (UniDA), we also validate our approach on
other two sub-cases, i.e. partial domain adaptation (PDA)
and open set domain adaptation (OSDA).

Dataset. We conduct experiments on four datasets.
Office-31 [52] consists of 4652 images from three do-
mains: DSLR (D), Amazon (A), and Webcam (W). Office-
Home [60] is a more challenging dataset, which consists of
15500 images from 65 categories. It is made up of 4 do-
mains: Artistic images (Ar), Clip-Art images (CI), Product
images (Pr), and Real-World images (Rw). VisDA [50],
is a large-scale dataset, where the source domain contains
15K synthetic images and the target domain consists of 5K
images from the real world. DomainNet [49] is the largest
domain adaptation dataset with about 0.6 million images.
Like [17], we conduct experiments on three subsets from it,
i.e., Painting (P), Real (R), and Sketch (S).

Following existing works [47, 54, 4, 62], we separate the
label set into three parts: common classes C, source-private
classes Ĉs and target-private classes Ĉt. The separation of
four datasets is described in Table 3. The classes are sepa-
rated according to their alphabetical order.

Evaluation. For all experiments, we report the averaged
results of three runs. In OSDA and UniDA, target-private
classes are grouped into a single unknown class, and we re-
port two metrics, i.e., Acc. and HM, where the former is
the mean of per-class accuracy over common classes and
unknown class, and the latter is the harmonic mean on ac-
curacy of common samples and private ones like [17, 1]. In
VisDA under OSDA, we present OS and OS* results as pre-
vious works [54, 38], where OS is same as Acc. and OS*
only calculates the mean accuracy on common classes. In
PDA, we report the mean of per-class accuracy over com-



Table 1. Results (%) on Office-31 for UniDA (ResNet-50).

UniDA A→W D→W W→D A→D D→A W→A Avg

Acc. HM Acc. HM Acc. HM Acc. HM Acc. HM Acc. HM Acc. HM

DANN [19] 80.65 48.82 80.94 52.73 88.07 54.87 82.67 50.18 74.82 47.69 83.54 49.33 81.78 50.60
RTN [41] 85.70 50.21 87.80 54.68 88.91 55.24 82.69 50.18 74.64 47.65 83.26 49.28 83.83 51.21
IWAN [63] 85.25 50.13 90.09 54.06 90.00 55.44 84.27 50.64 84.22 49.65 86.25 49.79 86.68 51.62
PADA [4] 85.37 49.65 79.26 52.62 90.91 55.60 81.68 50.00 55.32 42.87 82.61 49.17 79.19 49.98
ATI [47] 79.38 48.58 92.60 55.01 90.08 55.45 84.40 50.48 78.85 48.48 81.57 48.98 84.48 51.16
OSBP [54] 66.13 50.23 73.57 55.53 85.62 57.20 72.92 51.14 47.35 49.75 60.48 50.16 67.68 52.34
UAN [62] 85.62 58.61 94.77 70.62 97.99 71.42 86.50 59.68 85.45 60.11 85.12 60.34 89.24 63.46
CMU [17] 86.86 67.33 95.72 79.32 98.01 80.42 89.11 68.11 88.35 71.42 88.61 72.23 91.11 73.14

Ours 91.66 78.54 94.52 79.29 96.20 88.58 93.70 88.50 90.43 70.18 91.97 75.87 93.08 80.16

Table 2. HM (%) on Office-Home for UniDA (ResNet-50).
UniDA Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

DANN [19] 42.36 48.02 48.87 45.48 46.47 48.37 45.75 42.55 48.70 47.61 42.67 47.40 46.19
RTN [41] 38.41 44.65 45.70 42.64 44.06 45.48 42.56 36.79 45.50 44.56 39.79 44.53 42.89
IWAN [63] 40.54 46.96 47.78 44.97 45.06 47.59 45.81 41.43 47.55 46.29 42.49 46.54 45.25
PADA [4] 34.13 41.89 44.08 40.56 41.52 43.96 37.04 32.64 44.17 43.06 35.84 43.35 40.19
ATI [47] 39.88 45.77 46.63 44.13 44.39 46.63 44.73 41.20 46.59 45.05 41.78 45.45 44.35
OSBP [54] 39.59 45.09 46.17 45.70 45.24 46.75 45.26 40.54 45.75 45.08 41.64 46.90 44.48
UAN [62] 51.64 51.70 54.30 61.74 57.63 61.86 50.38 47.62 61.46 62.87 52.61 65.19 56.58
CMU [17] 56.02 56.93 59.15 66.95 64.27 67.82 54.72 51.09 66.39 68.24 57.89 69.73 61.60

Ours 57.97 54.05 58.01 74.64 70.62 77.52 64.34 73.60 74.94 80.96 75.12 80.38 70.18

Table 3. The division on label set, i.e., Common Class (C) /
Source-Private Class ( Ĉs) / Target Private Class ( Ĉt).

Dataset
Class Split (|C|/|Ĉs|/|Ĉt|)

PDA OSDA UniDA
Office-31 10 / 21 / 0 10 / 0 / 11 10 / 10 / 11
OfficeHome 25 / 40 / 0 25 / 0 / 40 10 / 5 / 50
VisDA − 6 / 0 / 6 6 / 3 / 3
DomainNet − − 150 / 50 / 145

mon classes.
Implementation details. Our implementation is based

on PyTorch [48]. We start from ResNet-50 [21] with the
backbone pretrained on ImageNet [13]. The classifier con-
sists of two fully-connected layers, which follows the previ-
ous design [62, 17, 54, 4]. For a fair comparison, we adopt
VGGNet [55] as backbone for OSDA task on VisDA.

We optimize the model using Nesterov momentum SGD
with momentum of 0.9 and weight decay of 5× 10−4. The
learning rate decays with the factor of (1 + α i

N )−β , where
i and N denote current iteration and global iteration, and
we set α = 10 and β = 0.75. The batch size is set to 36.
The initial learning rate is set to 1× 10−4 for Office-31 and
VisDA, and 1× 10−3 for Office-Home and DomainNet.

5.2. Comparison with previous state-of-the-arts

We compare our method with previous state-of-the-arts
in three sub-cases of universal domain adaptation, i.e.,
OSDA, PDA, and UniDA. For OSDA and PDA, we com-
pare our method to the universal domain adaptation meth-
ods, without knowing the prior that private classes exist

Table 4. Results (%) on VisDA for OSDA (VGGNet) and UniDA
(ResNet-50). *: variants of OSVM using MMD and DANN.

Method
OSDA

Method
UniDA

OS OS* Acc. HM
OSVM [26] 52.5 54.9 RTN [41] 53.92 26.02
MMD+OSVM* 54.4 56.0 IWAN [63] 58.72 27.64
DANN+OSVM* 55.5 57.8 ATI [47] 54.81 26.34
ATI-λ [47] 59.9 59.0 OSBP [54] 30.26 27.31
OSBP [54] 62.9 59.2 UAN [62] 60.83 30.47
STA [38] 66.8 63.9 USFDA [31] 63.92 −
Inheritune [32] 68.1 64.7 CMU [17] 61.42 34.64
Ours 68.8 68.0 Ours 64.20 43.02

only in source domain (i.e. PDA) or only in target domain
(i.e. OSDA). Also, we compare our method to the baselines
tailed for OSDA and PDA settings, by taking the prior of
each setting into consideration.

UniDA Setting. In the most challenging setting, i.e.
UniDA, our approach achieves new state-of-the-arts. Ta-
ble 1 shows the results on Office-31. The proposed method
surpasses all compared methods in terms of both accuracy
and HM. Especially, with respect to HM, our method out-
perform previous state-of-art method CMU [17] by 7%,
which shows our method strikes a better balance between
identifications of common and private samples. Office-
Home (Table 2) is a more challenging dataset where the
number of private classes is much more than common
classes (55 vs. 10). Under this extreme scenario, our
method demonstrates a stronger capability on the common-
private separation (9% improvement in terms of HM),
which benefits from the higher compactness of private sam-



Table 5. HM (%) on Office and Office-Home under the OSDA scenario (ResNet-50). The reported numbers for previous OSDA methods
are cited from [1]. We use ‘U’ and ‘O’ to denote methods designed for UniDA setting and OSDA setting, respectively.

Method Ty
pe Office Office-Home

A2W A2D D2W W2D D2A W2A Avg Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg

STAmax [38] O 75.9 75.0 69.8 75.2 73.2 66.1 72.5 55.8 54.0 68.3 57.4 60.4 66.8 61.9 53.2 69.5 67.1 54.5 64.5 61.1

OSBP [54] O 82.7 82.4 97.2 91.1 75.1 73.7 83.7 55.1 65.2 72.9 64.3 64.7 70.6 63.2 53.2 73.9 66.7 54.5 72.3 64.7

ROS [1] O 82.1 82.4 96.0 99.7 77.9 77.2 85.9 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2
Ours O 87.1 85.5 91.2 87.1 85.5 84.4 86.8 52.9 67.4 80.6 49.8 66.6 67.0 59.5 52.8 64.0 56.0 76.9 62.7 64.2

UAN [62] U 46.8 38.9 68.8 53.0 68.0 54.9 55.1 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.1 0.1

Ours U 54.8 58.3 89.4 80.9 67.2 85.3 72.6 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7

Table 6. Accuracy (%) on Office and Office-Home under the PDA scenario (ResNet-50). We use ‘U’ and ‘P’ to denote methods designed
for UniDA setting and PDA setting, respectively.

Method Ty
pe Office Office-Home

A2W A2D D2W W2D D2A W2A Avg Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg

IWAN [63] P 90.5 89.2 95.6 99.3 94.3 99.4 94.7 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6

SAN [3] P 94.3 93.9 94.2 99.3 88.7 99.4 95.0 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.1 50.2 78.7 65.3

PADA [4] P 82.2 86.5 92.7 99.3 95.4 100.0 92.7 52.0 67.00 78.7 52.2 53.8 59.1 52.6 43.2 78.8 73.7 56.6 77.1 62.1

ETN [5] P 94.5 95.0 100.0 100.0 96.2 94.6 96.7 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5

RTNet [9] P 96.2 97.6 100.0 100.0 92.3 95.4 96.9 63.2 80.1 80.7 66.7 69.3 77.2 71.6 53.9 84.6 77.4 57.9 85.5 72.3

Ours P 99.7 96.1 100.0 100.0 95.3 96.3 97.9 59.0 84.4 83.4 67.8 72.7 79.8 68.4 53.2 83.7 75.8 59.0 88.3 73.0

UAN [62] U 76.8 79.7 93.4 98.3 82.7 83.7 85.8 24.5 35.0 41.5 34.7 32.3 32.7 32.7 21.1 43.0 39.7 26.6 46.0 34.2

Ours U 97.6 87.3 100.0 100.0 96.6 96.3 96.3 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9

Table 7. HM (%) on DomainNet for UniDA (ResNet-50).
Method P→R R→P P→S S→P R→S S→R Avg

DANN [19] 31.18 29.33 27.84 27.84 27.77 30.84 29.13
RTN [41] 32.27 30.29 28.71 28.71 28.63 31.90 30.08
IWAN [63] 35.38 33.02 31.15 31.15 31.06 34.94 32.78
PADA [4] 28.92 27.32 26.03 26.03 25.97 28.62 27.15
ATI [47] 32.59 30.57 28.96 28.96 28.89 32.21 30.36
OSBP [54] 33.60 33.03 30.55 30.53 30.61 33.65 32.00
UAN [62] 41.85 43.59 39.06 38.95 38.73 43.69 40.98
CMU [17] 50.78 52.16 45.12 44.82 45.64 50.97 48.25

Ours 56.90 50.25 43.66 44.92 43.31 56.15 49.20

ples. We also testify DCC on VisDA and present the re-
sults in Table 4. Notably, with higher accuracy, our method
shows +9% improvement compared to CMU [17] in terms
of HM, implying a higher capacity on identifying private
samples. In Table 7, we present the results on a large scale
dataset DomainNet. DCC yields consistent improvement,
verifying its effectiveness on large-scale dataset.

OSDA and PDA setting. In Table 5, Table 6, and Ta-
ble 4, we present the results under PDA and OSDA sce-
narios. We use ‘P’ and ‘O’ to denote the methods specif-
ically designed for PDA and OSDA accordingly, and use
‘U’ to denote the UniDA methods. As shown in the tables,
our approach performs favorably against previous meth-
ods in different scenarios, i.e. with and without using the
prior knowledge. Particularly, our method without using the
prior (‘U’) yields even better result compared to compet-
itive methods tailed for the PDA setting. For example, on
Office-Home, our method (‘U’) achieves 70.9% average ac-
curacy, which outperforms PADA [4] (62.1%) and ETN [5]
(70.5%), demonstrating that our method can effectively sep-

arate common samples from private ones.

5.3. Ablation Studies

Effect of Cycle-Consistence Matching (CCM). To
show how CCM can effectively identify common classes,
we vary the number of common classes (|C|) and observe
the identified common classes under different values of K.
In Fig. 4 (a), asK increases, the number of matched clusters
tends to converge to a value which is quite near to |C|.

Effect of Domain Consensus Score. To better under-
stand domain consensus score, we conduct a series of ex-
periments to reveal its mechanism.

First, we decompose the domain consensus score into
two parts, i.e., Ss and St; Ss is the consensus score of
source samples while the other denotes score of target sam-
ples. As shown in Fig. 4 (b), as the K increases, Ss and
St show opposite trend, i.e., Ss increases but St decreases.
As the K increases, target samples are divided into more
and smaller target clusters. Therefore, smaller target sam-
ples could better match source clusters, which causes the
increase of St. On the other hand, as more target clusters
form, source clusters are more easily distracted by nearby
target clusters, which explains the drop of Ss.

Second, in Fig. 4 (c), we visualize the evolution of do-
main consensus score as training progresses. As expected,
the domain consensus score saturates after the early rounds,
which indicates that our method can find the optimal num-
ber of clusters quickly. Moreover, this also implies that the
searching is only necessary at the early stage.

Third, we compare domain consensus score with pre-
vious general metrics to determine the number of clusters



(a) (b) (c) (d)
Figure 4. Ablation Analysis (Best viewed in color). (a) Number of identified common classes w.r.t. K under varying |C|. (b) Decomposed
consensus score w.r.t. K. (c) The evolution of consensus score as training progresses. (d) The evolution of K as training progresses. The
first row is extracted from Ar→Rw of Office-Home and the second row is from A→D of Office-31.
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Figure 5. Performance comparison on cluster evaluation metrics.

Table 8. Effect of Lcdd and Lreg .
Lcdd + Lreg Lcdd Lreg

Office-Home 70.18 61.48 62.85
DomainNet (P→R) 56.90 54.16 53.55

(i.e., calinski harabasz score [2], davies bouldin score [12],
and silhouette score [51]), and present the results in Fig. 5.
Our metric obviously outperforms previous ones, proving
the benefits of taking the distribution shift into account.

Effect of Domain Consensus Clustering. Fig. 4 (d)
shows the evolution of K during training under three sce-
narios. In theses experiments, we do not employ the pro-
posed stop criteria (see Section 4.3). As shown in these fig-
ures, the number of clusters converges to the optimal value
after several initial searches, which is consistent with the
convergence of consensus score (Fig. 4 (c)). This indicates
that the searching of K is only necessary in the early stage
of training, which justifies the proposed stop criteria.

Effect of Lcdd and Lreg . To evaluate the contribution
of Lcdd and Lreg , we train the model with each component
solely and present the results in Table 8, which verifies the
contribution of each term.

Sensitivity to Hyper-parameters. To show the sensi-
tivity of our method to the hyper-parameter λ, we conduct
experiments on Office-31 under UniDA setting, and present

(a) (b)

Figure 6. (a) Sensitivity to λ on Office31. (b) Comparison between
constant γ (i.e., 0.1, 0.5, 1.0) and dynamic γ (‘Incre. γ’) (Office-
Home). All experiments are conducted under UniDA setting.

the results in Fig. 6 (a). Within a wide range of λ (0.1-0.3),
the performance only varies in a small range, showing that
our method is robust to different choices of λ. Also, we
compare our way of progressively increasing γ (denoted as
‘Incre. γ’) with using various constant values on Office-
Home under UniDA setting. As shown in Fig. 6 (b), ‘Incre.
γ’ achieves better results for most of the tasks, which veri-
fies the effectiveness of this design.

6. Conclusion
This paper proposes Domain Consensus Clustering

(DCC), which performs adaptation over unaligned label
space via encouraging discriminative target clusters. To be
specific, DCC exploits domain consensus knowledge from
two levels, i.e., semantic-level and sample-level, to iden-
tify private samples and guide the target clustering. Exper-
iments on four benchmarks show superior performance of
proposed methods, compared to previous state-of-the-arts.
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